|
0th |
1st, 2nd | 3rd, 4th |
5th, 6th | 7th |
|
\(\large{S=\frac{1}{n} H_n Y} \qquad (1)\) |
\(\large{ Y= \begin{bmatrix} y\left(0\right) \\ y\left(1\right) \\ y\left(2\right) \\ \vdots \\ y\left(n-1\right) \\ \end{bmatrix} }\) |
\(\large{H_n\left(k, j\right)=cas\left(2\pi \frac{kj}{n}\right)=\cos \left(2\pi \frac{kj}{n} \right) + \sin \left(2\pi \frac{kj}{n} \right)}\) |
\(\large{=\sqrt 2 \sin \left(2\pi \frac{kj}{n} + arctan(1, 1) \right)} \qquad (2)\) |
\(\large{k, j}\): | 行, 列のインデックス |
\(\large{H_n\left(k, j\right)=\frac{1}{n}H_n^{-1}} \qquad (3)\) | |
\(\large{H_n^{-1}\left(k, j\right)=cas \left(2\pi \frac{kj}{n} \right)} \qquad (4)\) |
\(\large{H_n\left(k, j\right)=\frac{1}{n} cas \left(2\pi \frac{k \left(2j + 1 \right)}{2n} \right)} \qquad (5)\) | |
\(\large{H_n^{-1}\left(k, j\right)=cas \left(2\pi \frac{\left(2k + 1 \right)j}{2n} \right)} \qquad (6)\) |
\(\large{H_n\left(k, j\right)=\frac{1}{n} cas \left(2\pi \frac{\left(2k + 1 \right)j}{2n} \right)} \qquad (7)\) | |
\(\large{H_n^{-1}\left(k, j\right)=cas \left(2\pi \frac{k\left(2j + 1 \right)}{2n} \right)} \qquad (8)\) |
\(\large{H_n\left(k, j\right)=\frac{1}{n}H_n^{-1}} \qquad (9)\) | |
\(\large{H_n^{-1}\left(k, j\right)=cas \left(2\pi \frac{\left( 2k + 1 \right)\left(2j + 1 \right)}{4n} \right)} \qquad (10)\) |
\(\left(0 \leqq k \lt n, \quad 0 \leqq j \lt n\right)\) |