|
0th |
1st, 2nd | 3rd, 4th |
5th, 6th | 7th |
|
\(\large{S=H_n Y} \qquad (1)\) |
\(\large{ Y= \begin{bmatrix} y\left(0\right) \\ y\left(1\right) \\ y\left(2\right) \\ \vdots \\ y\left(n-1\right) \\ \end{bmatrix} }\) |
\(\large{H_n\left(k, j\right)=H_n^{-1}\left(k, j\right)}\) | \(\large{=\sqrt \frac{2}{n-1} c_1(k) c_1(j) \cos \left(\pi \frac{kj}{n-1} \right)} \qquad (2)\) |
\(\large{H_n\left(k, j\right)}\) | \(\large{=\sqrt \frac{2}{n} c(k) \cos \left(\pi \frac{k(2j+1)}{2n} \right)} \qquad (3)\) | |
\(\large{H_n^{-1}\left(k, j\right)}\) | \(\large{=\sqrt \frac{2}{n} c(j) \cos \left(\pi \frac{(2k+1)j}{2n} \right)} \qquad (4)\) |
\(\large{H_n\left(k, j\right)}\) | \(\large{=\sqrt \frac{2}{n} c(j) \cos \left(\pi \frac{(2k+1)j}{2n} \right)} \qquad (5)\) | |
\(\large{H_n^{-1}\left(k, j\right)}\) | \(\large{=\sqrt \frac{2}{n} c(k) \cos \left(\pi \frac{k(2j+1)}{2n} \right)} \qquad (6)\) |
\(\large{H_n\left(k, j\right)=H_n^{-1}\left(k, j\right)}\) | \(\large{=\sqrt \frac{2}{n} \cos \left(\pi \frac{(2k+1)(2j+1)}{4n} \right)} \qquad (7)\) |
\(\left(0 \leqq k \lt n, \quad 0 \leqq j \lt n\right)\) |
\(\large{c_1\left(i\right)= \begin{eqnarray} \left\{ \begin{array}{l} \frac{1}{\sqrt 2} \qquad (i=0,n-1) \\ 1 \qquad (0 \lt i \lt n-1) \\ \end{array} \right. \end{eqnarray} }\) |
\(\large{c\left(i\right)= \begin{eqnarray} \left\{ \begin{array}{l} \frac{1}{\sqrt 2} \qquad (i=0,n) \\ 1 \qquad (0 \lt i \lt n) \\ \end{array} \right. \end{eqnarray} }\) |