
System’s Half Width 

Introduction 

This paper is going to discuss about the system response for the measurement device 

development in which the author has ever engaged for a long time. The response means a 

degradation, a blur. The author remembers that handling the time series is a lot, but it is not 

limited for only the time series. Now, the theme is how to estimate the blur, rather than the 

numerical calculation method. 

 

Half Width 

Half width at half maximum ℎ is a characteristic to measure the blur(Fig.1).  

 

Fig.1 Half Width at Half Maximum 

 

The half width at half maximum is defined by the width ℎ at the position that the wave’s 

height becomes a half of its maximum. For short, the half width, may mean the full width at 

half maximum, generally. This paper says the half width at half maximum as the half width 

because of the comparison to 𝜎. 

 

Blur(Signal Degradation) 

Generally, input the source signal 𝑓, then the output, the observed signal 𝑚 will be got 

(Fig.2). 
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Fig.2 Blur(Signal Degradation) 

 

As mathematics, the time domain signal is expressed by convoluting the system response 

function(1).  

𝑚(𝑡) = 𝑓(𝑡)⨂𝑠(𝑡) = ∫ 𝑓(𝜏)𝑠(𝑡 − 𝜏)
∞

−∞

𝑑𝜏 (1) 

⨂: Convolution 

 

In the case of time series, it becomes a superposition(addition) of the impulse response. 

This might be expressed by the semi-infinite integral interval. 
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Gaussian Function’s Assumption 

At first, let’s think about the case that both the source signal and system response function 

are gaussian functions. Before starting, clear the relation between 𝜎 and the half width. The 

gaussian function is (2). 

exp (
−(𝑥 − 𝑥̅)2

2𝜎2
)  (2) 

 

As the half width ℎ, the relation to 𝜎 will be got by (3). 

1

2
= exp (

−((𝑥̅ + ℎ) − 𝑥̅)
2

2𝜎2
)  (3) 

 

Assume 𝑥̅ = 0 for short(4), it becomes (5). 

1

2
= exp (

−ℎ2

2𝜎2
)  (4) 

2 = exp (
ℎ2

2𝜎2
) 

ℎ2

2𝜎2
= ln 2 

 

ℎ2 = 2𝜎2 ln 2 

ℎ = √2 ln 2 𝜎 

ℎ ≈ 1.18𝜎 (5) 

 

The half width is proportional to the deviation. Here, define the source signal and the system 

response function as (6), (7). 

𝑓(𝑡) = 𝑎𝑓 exp (
−𝑡2

2𝜎𝑓
2

)  (6) 

𝑠(𝑡) = 𝑎𝑠 exp (
−𝑡2

2𝜎𝑠
2

)  (7) 

 

Convolute, it becomes the observed signal 𝑚(𝑡)(8)→(9). 

𝑚(𝑡) = 𝑓(𝑡)⨂𝑠(𝑡) = ∫ 𝑓(𝜏)𝑠(𝑡 − 𝜏)
∞

−∞

𝑑𝜏 (8) 

= ∫ 𝑎𝑓 exp (
−𝜏2

2𝜎𝑓
2

) 𝑎𝑠 exp (
−(𝑡 − 𝜏)2

2𝜎𝑠
2

)
∞

−∞

𝑑𝜏 



= 𝑎𝑓𝑎𝑠 ∫ exp (
−𝜏2

2𝜎𝑓
2

+
−(𝑡 − 𝜏)2

2𝜎𝑠
2

)
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 ∫ exp (
−𝜎𝑠

2𝜏2 − 𝜎𝑓
2(𝑡2 − 2𝜏𝑡 + 𝜏2)

2𝜎𝑓
2𝜎𝑠

2
)

∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 ∫ exp (
−1

2𝜎𝑓
2𝜎𝑠

2
((𝜎𝑠

2 + 𝜎𝑓
2)𝜏2 − 2𝜎𝑓

2𝑡𝜏 + 𝜎𝑓
2𝑡2))

∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 ∫ exp (
−1

2𝜎𝑓
2𝜎𝑠

2
((√𝜎𝑠

2 + 𝜎𝑓
2𝜏 −

𝜎𝑓
2𝑡

√𝜎𝑠
2 + 𝜎𝑓

2
)

2

−
𝜎𝑓

4𝑡2

𝜎𝑠
2 + 𝜎𝑓

2
+ 𝜎𝑓

2𝑡2))
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 exp (
𝜎𝑓

4𝑡2 − 𝜎𝑓
2𝑡2(𝜎𝑠

2 + 𝜎𝑓
2)

2𝜎𝑓
2𝜎𝑠

2(𝜎𝑠
2 + 𝜎𝑓

2)
) ∫ exp (

−1

2𝜎𝑓
2𝜎𝑠

2
(√𝜎𝑠

2 + 𝜎𝑓
2𝜏 −

𝜎𝑓
2𝑡

√𝜎𝑠
2 + 𝜎𝑓

2
)

2

)
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 exp (
−𝜎𝑓

2𝜎𝑠
2𝑡2

2𝜎𝑓
2𝜎𝑠

2(𝜎𝑠
2 + 𝜎𝑓

2)
) ∫ exp (

−1

2𝜎𝑓
2𝜎𝑠

2
(

(𝜎𝑠
2 + 𝜎𝑓

2)𝜏 − 𝜎𝑓
2𝑡

√𝜎𝑠
2 + 𝜎𝑓

2
)

2

)
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 exp (
−𝑡2

2(𝜎𝑠
2 + 𝜎𝑓

2)
) ∫ exp (− (

(𝜎𝑠
2 + 𝜎𝑓

2)𝜏 − 𝜎𝑓
2𝑡

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2
)

2

)
∞

−∞

𝑑𝜏 (9) 

 

Put (10) to the integral term, the permutation integral is possible. 

𝑥 =
(𝜎𝑠

2 + 𝜎𝑓
2)𝜏 − 𝜎𝑓

2𝑡

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2
 (10) 

(𝜎𝑠
2 + 𝜎𝑓

2)𝜏 − 𝜎𝑓
2𝑡 = √2𝜎𝑓𝜎𝑠√𝜎𝑠

2 + 𝜎𝑓
2𝑥 

𝜏 =
√2𝜎𝑓𝜎𝑠√𝜎𝑠

2 + 𝜎𝑓
2𝑥 + 𝜎𝑓

2𝑡

𝜎𝑠
2 + 𝜎𝑓

2
 

𝑑𝜏

𝑑𝑥
=

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2

𝜎𝑠
2 + 𝜎𝑓

2
 

 

Therefore, the integral term becomes (11). 

∫ exp (− (
(𝜎𝑠

2 + 𝜎𝑓
2)𝜏 − 𝜎𝑓

2𝑡

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2
)

2

)
∞

−∞

𝑑𝜏

= ∫ exp(−𝑥2)
∞

−∞

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2

𝜎𝑠
2 + 𝜎𝑓

2
𝑑𝑥＝ 

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2

𝜎𝑠
2 + 𝜎𝑓

2
∫ exp(−𝑥2)

∞

−∞

𝑑𝑥 (11) 

 

Gaussian integral formula is (12). 

∫ exp(−𝑥2)
∞

−∞

𝑑𝑥 = √𝜋 (12) 

 



Above all, the observed signal becomes (13). 

𝑚(𝑡) = 𝑎𝑓𝑎𝑠 exp (
−𝑡2

2(𝜎𝑠
2 + 𝜎𝑓

2)
)

√2𝜎𝑓𝜎𝑠√𝜎𝑠
2 + 𝜎𝑓

2

𝜎𝑠
2 + 𝜎𝑓

2 √𝜋

= 𝑎𝑓𝑎𝑠𝜎𝑓𝜎𝑠√
2𝜋

𝜎𝑠
2 + 𝜎𝑓

2
exp (

−𝑡2

2(𝜎𝑠
2 + 𝜎𝑓

2)
)  (13) 

 

The gaussian function’s convolution combination becomes the gaussian function. Then, the 

observed signal’s deviation 𝜎𝑚 is (14).. 

𝜎𝑚 = √𝜎𝑠
2 + 𝜎𝑓

2 (14) 

 

Therefore, the half width is same(15). 

ℎ𝑚 = √ℎ𝑠
2 + ℎ𝑓

2 (15) 

 

How about the case that the integral interval is the semi-infinite?  The gaussian integral is 

(16). 

∫ exp(−𝑥2)
∞

0

𝑑𝑥 =
1

2
√𝜋 (16) 

 

Therefore, although the integral interval has changed, the deviation still remains (14). 

  



Lorentzian Function’s Assumption 

The lorentzian function is (17). 

𝜎

(𝑥 − 𝑥̅)2 + 𝜎2
 (17) 

 

It is a similar shape to the gaussian function. Let’s estimate the half width just like the gaussian 

function(18). 

1

2
∙

1

𝜎
=

𝜎

ℎ2 + 𝜎2
 

ℎ2 + 𝜎2 = 2𝜎2 

ℎ2 = 𝜎2 

ℎ = 𝜎 (18) 

 

The lorentzian function’s half width is the deviation itself. Here, define the source signal and 

the system response function as (19), (20). 

𝑓(𝑡) = 𝑎𝑓

𝜎𝑓

𝑡2 + 𝜎𝑓
2
 (19) 

𝑠(𝑡) = 𝑎𝑠

𝜎𝑓

𝑡2 + 𝜎𝑠
2
 (20) 

 

Convolute, it becomes the observed signal 𝑚(𝑡)(21). 

𝑚(𝑡) = 𝑓(𝑡)⨂𝑠(𝑡) (21) 

= ∫ 𝑎𝑓

𝜎𝑓

𝜏2 + 𝜎𝑓
2

𝑎𝑠

𝜎𝑠

(𝑡 − 𝜏)2 + 𝜎𝑠
2

∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠𝜎𝑓𝜎𝑠 ∫
1

(𝜏2 + 𝜎𝑓
2)((𝜏 − 𝑡)2 + 𝜎𝑠

2)

∞

−∞

𝑑𝜏 

 

The format is the rational function(22). 

1

(𝜏2 + 𝜎𝑓
2)((𝜏 − 𝑡)2 + 𝜎𝑠

2)
=

𝐴𝜏 + 𝐵

𝜏2 + 𝜎𝑓
2

+
𝐶𝜏 + 𝐷

(𝜏 − 𝑡)2 + 𝜎𝑠
2
 (22) 

(𝐴𝜏 + 𝐵)((𝜏 − 𝑡)2 + 𝜎𝑠
2) + (𝐶𝜏 + 𝐷)(𝜏2 + 𝜎𝑓

2) = 1 

(𝐴𝜏 + 𝐵)(𝜏2 − 2𝜏𝑡 + 𝑡2 + 𝜎𝑠
2) + (𝐶𝜏 + 𝐷)(𝜏2 + 𝜎𝑓

2) − 1 = 0 

(𝐴 + 𝐶)𝜏3 + (−2𝑡𝐴 + 𝐵 + 𝐷)𝜏2 + ((𝑡2 + 𝜎𝑠
2)𝐴 − 2𝑡𝐵 + 𝜎𝑓

2𝐶) 𝜏 + (𝑡2 + 𝜎𝑠
2)𝐵 + 𝜎𝑓

2𝐷 − 1 = 0 

 



Therefore, the coefficients’ coalition is (23)～(26). 

𝐴 + 𝐶 = 0 (23) 

−2𝑡𝐴 + 𝐵 + 𝐷 = 0 (24) 

(𝑡2 + 𝜎𝑠
2)𝐴 − 2𝑡𝐵 + 𝜎𝑝

2𝐶 = 0 (25) 

(𝑡2 + 𝜎𝑠
2)𝐵 + 𝜎𝑝

2𝐷 − 1 = 0 (26) 

 

Solve the coalition(27)～(30). 

𝐴＝ − 𝐶 

2𝑡𝐶 + 𝐵 + 𝐷 = 0 

𝐵 = −𝐷 − 2𝑡𝐶 

−(𝑡2 + 𝜎𝑠
2)𝐶 − 2𝑡(−𝐷 − 2𝑡𝐶) + 𝜎𝑓

2𝐶 = 0 

2𝑡𝐷 = (𝑡2 + 𝜎𝑠
2)𝐶 − 4𝑡2𝐶 − 𝜎𝑓

2𝐶 

𝐷 =
−3𝑡2 + 𝜎𝑠

2 − 𝜎𝑓
2

2𝑡
𝐶 

 

𝐵 = −
−3𝑡2 + 𝜎𝑠

2 − 𝜎𝑓
2

2𝑡
𝐶 − 2𝑡𝐶 =

3𝑡2 − 𝜎𝑠
2 + 𝜎𝑓

2 − 4𝑡2

2𝑡
𝐶

=
−𝑡2 − 𝜎𝑠

2 + 𝜎𝑓
2

2𝑡
𝐶 

 

(𝑡2 + 𝜎𝑠
2)

−𝑡2 − 𝜎𝑠
2 + 𝜎𝑓

2

2𝑡
𝐶 + 𝜎𝑓

2
−3𝑡2 + 𝜎𝑠

2 − 𝜎𝑓
2

2𝑡
𝐶 − 1 = 0 

(𝑡2 + 𝜎𝑠
2)(−𝑡2 − 𝜎𝑠

2 + 𝜎𝑓
2) + 𝜎𝑓

2(−3𝑡2 + 𝜎𝑠
2 − 𝜎𝑓

2)

2𝑡
𝐶 = 1 

𝐶 =
2𝑡

−𝑡4 + (−𝜎𝑠
2 + 𝜎𝑓

2 − 𝜎𝑠
2 − 3𝜎𝑓

2)𝑡2 + (−𝜎𝑠
4 + 𝜎𝑠

2𝜎𝑓
2 + 𝜎𝑓

2𝜎𝑠
2 − 𝜎𝑓

4)
 

=
2𝑡

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
4 − 2𝜎𝑠

2𝜎𝑓
2 + 𝜎𝑓

4)
 

=
2𝑡

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2  (27) 

 

𝐵 =
−𝑡2 − 𝜎𝑠

2 + 𝜎𝑓
2

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2  (28) 

𝐷 =
−3𝑡2 + 𝜎𝑠

2 − 𝜎𝑓
2

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2  (29) 



𝐴＝
−2𝑡

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2  (30) 

 

Therefore, the integral becomes (31). 

∫
1

(𝜏2 + 𝜎𝑓
2)((𝜏 − 𝑡)2 + 𝜎𝑠

2)

∞

−∞

𝑑𝜏 = ∫ (
𝐴𝜏 + 𝐵

𝜏2 + 𝜎𝑓
2

+
𝐶𝜏 + 𝐷

(𝜏 − 𝑡)2 + 𝜎𝑠
2

)
∞

−∞

𝑑𝜏 

= ∫ (
𝐴𝜏

𝜏2 + 𝜎𝑓
2

+
𝐵

𝜏2 + 𝜎𝑓
2

+
𝐶𝜏

(𝜏 − 𝑡)2 + 𝜎𝑠
2

+
𝐷

(𝜏 − 𝑡)2 + 𝜎𝑠
2

)
∞

−∞

𝑑𝜏 (31) 

 

(𝜏 − 𝑡) can be the permutation integral, as the integral interval is same after the variable 

conversion, continue(32). 

𝑥 = 𝜏 − 𝑡 

𝑑𝜏

𝑑𝑥
= 1 

= ∫
𝐴𝜏

𝜏2 + 𝜎𝑓
2

∞

−∞

𝑑𝜏 + ∫
𝐵

𝜏2 + 𝜎𝑓
2

∞

−∞

𝑑𝜏 + ∫
𝐶(𝑥 + 𝑡)

𝑥2 + 𝜎𝑠
2

𝑑𝜏

𝑑𝑥

∞

−∞

𝑑𝑥 + ∫
𝐷

𝑥2 + 𝜎𝑠
2

𝑑𝜏

𝑑𝑥

∞

−∞

𝑑𝑥 

= ∫
𝐴𝜏

𝜏2 + 𝜎𝑓
2

∞

−∞

𝑑𝜏 + ∫
𝐵

𝜏2 + 𝜎𝑓
2

∞

−∞

𝑑𝜏 + ∫
𝐶𝑥

𝑥2 + 𝜎𝑠
2

∞

−∞

𝑑𝑥 + ∫
𝐶𝑡

𝑥2 + 𝜎𝑠
2

∞

−∞

𝑑𝑥 + ∫
𝐷

𝑥2 + 𝜎𝑠
2

∞

−∞

𝑑𝑥 

= [
𝐴

2
log(𝜏2 + 𝜎𝑓

2)]
−∞

∞

+ [
𝐵

𝜎𝑓
tan−1

𝜏

𝜎𝑓
]

−∞

∞

+ [
𝐶

2
log(𝑥2 + 𝜎𝑠

2)]
−∞

∞

+ [
𝐶𝑡

𝜎𝑠
tan−1

𝑥

𝜎𝑠
]

−∞

∞

+ [
𝐷

𝜎𝑠
tan−1

𝑥

𝜎𝑠
]

−∞

∞

 

=
𝐴

2
( lim

𝜏→∞
log(𝜏2 + 𝜎𝑓

2) − lim
𝜏→∞

log((−𝜏)2 + 𝜎𝑓
2)) +

𝐵

𝜎𝑓
(

𝜋

2
− (−

𝜋

2
)) +

𝐶

2
(0) +

𝐶𝑡

𝜎𝑠

(𝜋) +
𝐷

𝜎𝑠

(𝜋) 

= 𝜋 (
𝐵

𝜎𝑓
+

𝐶𝑡 + 𝐷

𝜎𝑠
) =

𝜋

𝜎𝑓𝜎𝑠
(𝜎𝑠𝐵 + 𝜎𝑓(𝐶𝑡 + 𝐷))  (32) 

 

Put together, the observed signal becomes (33). 

𝑚(𝑡) = 𝑎𝑓𝑎𝑠𝜎𝑓𝜎𝑠

𝜋

𝜎𝑓𝜎𝑠
(𝜎𝑠𝐵 + 𝜎𝑓(𝐶𝑡 + 𝐷)) = 𝑎𝑓𝜎𝑠𝜋 (𝜎𝑠𝐵 + 𝜎𝑓(𝐶𝑡 + 𝐷)) 

= 𝑎𝑓𝑎𝑠𝜋 (𝜎𝑠

−𝑡2 − 𝜎𝑠
2 + 𝜎𝑓

2

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2 + 𝜎𝑓

2𝑡2 − 3𝑡2 + 𝜎𝑠
2 − 𝜎𝑓

2

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2) 

=
𝜋

𝜎𝑓𝜎𝑠
(

−(𝜎𝑠 + 𝜎𝑓)𝑡2 − 𝜎𝑠
3 + 𝜎𝑠𝜎𝑓

2 + 𝜎𝑓𝜎𝑠
2 − 𝜎𝑓

3

−𝑡4 − 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 − (𝜎𝑠
2 − 𝜎𝑓

2)
2 ) 

= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓)𝑡2 + 𝜎𝑠

3 − 𝜎𝑠𝜎𝑓
2 − 𝜎𝑓𝜎𝑠

2 + 𝜎𝑓
3

𝑡4 + 2(𝜎𝑠
2 + 𝜎𝑓

2)𝑡2 + (𝜎𝑠
2 − 𝜎𝑓

2)
2 ) 



= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓)𝑡2 + (𝜎𝑠 − 𝜎𝑓)(𝜎𝑠

2 − 𝜎𝑓
2)

(𝑡2 + 𝜎𝑠
2 + 𝜎𝑓

2)
2

− (𝜎𝑠
2 + 𝜎𝑓

2)
2

+ (𝜎𝑠
2 − 𝜎𝑓

2)
2) 

= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓)𝑡2 + (𝜎𝑠 − 𝜎𝑓)

2
(𝜎𝑠 + 𝜎𝑓)

(𝑡2 + 𝜎𝑠
2 + 𝜎𝑓

2)
2

+ (𝜎𝑠
2 − 𝜎𝑓

2 + 𝜎𝑠
2 + 𝜎𝑓

2) (𝜎𝑠
2 − 𝜎𝑓

2 − (𝜎𝑠
2 + 𝜎𝑓

2))
) 

= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓) (𝑡2 + (𝜎𝑠 − 𝜎𝑓)

2
)

(𝑡2 + 𝜎𝑠
2 + 𝜎𝑓

2)
2

+ 2𝜎𝑠
2 ∙ −2𝜎𝑓

2
) 

= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓) (𝑡2 + (𝜎𝑠 − 𝜎𝑓)

2
)

(𝑡2 + 𝜎𝑠
2 + 𝜎𝑓

2)
2

− 4𝜎𝑠
2𝜎𝑓

2
) 

= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓) (𝑡2 + (𝜎𝑠 − 𝜎𝑓)

2
)

(𝑡2 + 𝜎𝑠
2 + 𝜎𝑓

2 + 2𝜎𝑠𝜎𝑓)(𝑡2 + 𝜎𝑠
2 + 𝜎𝑓

2 − 2𝜎𝑠𝜎𝑓)
) 

= 𝑎𝑓𝑎𝑠𝜋 (
(𝜎𝑠 + 𝜎𝑓) (𝑡2 + (𝜎𝑠 − 𝜎𝑓)

2
)

(𝑡2 + (𝜎𝑠 + 𝜎𝑓)
2

) (𝑡2 + (𝜎𝑠 − 𝜎𝑓)
2

)
) 

= 𝑎𝑓𝑎𝑠𝜋 (
𝜎𝑠 + 𝜎𝑓

𝑡2 + (𝜎𝑠 + 𝜎𝑓)
2)  (33) 

 

The lorentzian function’s convolution combination becomes the lorentzian function. From 

the above, the observed signal’s deviation 𝜎𝑚 becomes (34). 

𝜎𝑚 = 𝜎𝑠 + 𝜎𝑓 (34) 

 

Therefore, the halfwidth is (35). 

ℎ𝑚 = ℎ𝑠 + ℎ𝑓 (35) 

 

It is different from the gaussian function, it can be expressed by the deviation’s addition. In 

addition, how about the case that the integral interval is the semi-infinite(36)? 



[
𝐴

2
log(𝜏2 + 𝜎𝑓

2)]
0

∞

+ [
𝐵

𝜎𝑓
tan−1

𝜏

𝜎𝑓
]

0

∞∞

+ [
𝐶

2
log(𝑥2 + 𝜎𝑠

2)]
0

∞

+ [
𝐶𝑡

𝜎𝑠
tan−1

𝑥

𝜎𝑠
]

−∞

∞

+ [
𝐷

𝜎𝑠
tan−1

𝑥

𝜎𝑠
]

0

∞

=
𝐴

2
( lim

𝜏→∞
log(𝜏2 + 𝜎𝑓

2) − lim
𝜏→0

log(𝜏2 + 𝜎𝑓
2)) +

𝐵

𝜎𝑓
(

𝜋

2
− 0)

+
𝐶

2
( lim

𝑥→∞
log(𝑥2 + 𝜎𝑠

2) − lim
𝑥→0

log(𝑥2 + 𝜎𝑠
2)) +

𝐶𝑡

𝜎𝑠
(

𝜋

2
) +

𝐷

𝜎𝑠
(

𝜋

2
)

=
𝐴

2
( lim

𝜏→∞
log(𝜏2 + 𝜎𝑓

2) − 2 log 𝜎𝑓) −
𝐴

2
( lim

𝑥→∞
log(𝑥2 + 𝜎𝑠

2) − 2 log 𝜎𝑠)

+
𝜋

2
(

𝐵

𝜎𝑓
+

𝐶𝑡 + 𝐷

𝜎𝑠
) = 𝐴 log 𝜎𝑠 − 𝐴 log 𝜎𝑓 +

𝜋

2
(

𝐵

𝜎𝑓
+

𝐶𝑡 + 𝐷

𝜎𝑠
) 

= 𝐴 log (
𝜎𝑠

𝜎𝑓
) +

𝜋

2
(

𝐵

𝜎𝑓
+

𝐶𝑡 + 𝐷

𝜎𝑠
) = 𝐴 log (

𝜎𝑠

𝜎𝑓
) +

𝑎𝑓𝑎𝑠𝜋

2
(

𝜎𝑠 + 𝜎𝑓

𝑡2 + (𝜎𝑠 + 𝜎𝑓)
2) (36) 

 

It is difficult to derive the analytical solution. But it can be approximated by log(𝜎𝑠/𝜎𝑓) ≈ 0 

around 𝜎𝑠 ≈ 𝜎𝑓 . In addition, if 𝑡(> 1) → ∞, then 𝐴 → 0, 𝐴 ‘s decreasing speed with 𝑡 ‘s 

increase is more rapid than the lorentzian function’s one. From above, it roughly conforms to 

(34), (35). 

 

  



Gaussian Function and Lorentzian Function’s Assumption 

How about the gaussian function and Lorentzian function(37), (38)? 

𝑓(𝑡) = 𝑎𝑓

𝜎𝑓

𝑡2 + 𝜎𝑓
2
 (37) 

𝑠(𝑡) = 𝑎𝑠 exp (
−𝑡2

2𝜎𝑠
2

)  (38) 

 

Convolute, it becomes the observed signal 𝑚(𝑡)(39). 

𝑚(𝑡) = 𝑎𝑓𝑎𝑠 ∫
𝜎𝑓

𝜏2 + 𝜎𝑓
2

exp (
−(𝑡 − 𝜏)2

2𝜎𝑠
2

)
∞

−∞

𝑑𝜏 (39)  

 

It is not integrable by any means. But it has a naming called as Voigt function. Although 

there must be a reason for it, it is unknown for the author.  

Now, although the integral is impossible, this paper’s interest is the half width. It can be 

estimated from the above result(Fig.3). 

 

Fig.3 Half Width Relation 

 

Once more the gaussian function’s combination is (14), the lorentzian function’s 

combination is (35). 

ℎ𝑚 = √ℎ𝑠
2 + ℎ𝑓

2 (14) 

ℎ𝑚 = ℎ𝑠 + ℎ𝑓 (35) 

 

 

Gaussian function’s combination 

√ℎ𝑠
2 + ℎ𝑓

2 

Lorentzian function’s 

 combination 

ℎ𝑚 = ℎ𝑠 + ℎ𝑓 

ℎ𝑠 

ℎ𝑓 

Characteristic between 

 Gaussian function and  

 Lorentzian function 



Although, the gaussian function and lorentzian function’s shape is similar, if their deviation 

is equal, the lorentzian function is more rapid (decay) curve than the gaussian curve. 

The characteristic will be estimated to be the intermediate between them(40). 

√ℎ𝑠
2 + ℎ𝑓

2 ≤ ℎ𝑚 ≤ ℎ𝑠 + ℎ𝑓 (40) 

 

What is Lorentzian Function? 

There are various shapes for the curve. In the case to estimate the blur, the decay’s speed 

is important. There are such as the polynomial function, the exponent function and 

the gaussian function to express the decay. Then, the estimation whether the curve is similar 

to the gaussian function by the curve fitting can be executed. 

The author thinks that the transient characteristics is absolutely representative for the 

exponent function. The gaussian function has an image derived from the probability. In the 

other hand, what kind of a function is the lorentzian function? In the optics, the function 

often appears. Especially, to express the spectrum’s shape by the lorentzian distribution is 

general. As the derivative equation for the physics, they might say the resonance 

phenomenon. Speaking of the derivative equation, it is the model handling almost the 

vibration. 2 order derivative equation’s format is (41). 

𝛼
𝑑2𝑓

𝑑𝑡2
+ 𝛽

𝑑𝑓

𝑑𝑡
+ 𝛾𝑓 = 0 (41) 

 

This format becomes (42) for the equation of motion, (43) for the electricity. 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝜇

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 (42) 

𝑥: Space 

𝑚: Mass 

𝜇: Friction coefficient 

𝑘: Spring constant 

 

𝑙
𝑑2𝑞

𝑑𝑡2
+ 𝑟

𝑑𝑞

𝑑𝑡
+

1

𝑐
𝑞 (43) 

𝑞: Electric charge 

𝑙: Inductor 

𝑟: Resistor 

𝑐: Capacitor 



Here, normalize (41) by the second derivative coefficient, it is expressed by (44). 

𝑑2𝑓

𝑑𝑡2
+ 𝛽

𝑑𝑓

𝑑𝑡
+ 𝛾𝑓 = 0 (44) 

 

According to the author’s recognition, the right side of (44) expresses an external 

disturbance(external force)(45). 

𝑑2𝑓

𝑑𝑡2
+ 𝛽

𝑑𝑓

𝑑𝑡
+ 𝛾𝑓 = 𝑔𝑒𝑖𝜔𝑡 (45) 

𝑔: External disturbance(external force)’s amplitude 

 

Although the general solution’s derivation for (44) is easy by using Laplace transform, it is 

well known as the vibration(46). 

𝑓(𝑡) = 𝑎𝑒𝑖𝜔𝑡 (46) 

 

Therefore, the external force and the system are considered to resonate together(single 

angular frequency). Substitute this to (45)(47). 

−𝑎𝜔2𝑒𝑖𝜔𝑡 + 𝑖𝛽𝑎𝜔𝑒𝑖𝜔𝑡 + 𝛾𝑎𝑒𝑖𝜔𝑡 = 𝑔𝑒𝑖𝜔𝑡 (47) 

(−𝜔2 + 𝑖𝛽𝜔 + 𝛾)𝑎 = 𝑔 

𝑎 =
𝑔

𝛾 − 𝜔2 + 𝑖𝛽𝜔
 

 

Therefore, 𝑓 is (48). 

𝑓 =
𝑔

𝛾 − 𝜔2 + 𝑖𝛽𝜔
𝑒−𝑖𝜔𝑡 (48) 

 

The amplitude is (49). 

|𝑓| =
𝑔

√(𝛾 − 𝜔2)2 + (𝛽𝜔)2
 (49) 

 

The square as the power is (50). 

|𝑓|2 =
𝑔2

(𝛾 − 𝜔2)2 + (𝛾𝜔)2
 (50) 

 

It looks like the lorentzian function. As the author can not find a good example, this may not 

be an example to understand easily. Aside, there is a case to encounter the lorentzian 

function. 



Gaussian Function and Exponent Function’s Assumption 

Finally, the gaussian function and exponent function(decay: transient characteristics) are 

(51), (52). 

𝑓(𝑡) = 𝑎𝑓 exp (
−𝑡2

2𝜎𝑓
2

)  (51) 

𝑠(𝑡) = 𝑎𝑠 exp(−𝜆𝑡)  (52) 

 

Convolute, it becomes the observed signal 𝑚(𝑡)(53). 

𝑚(𝑡) = 𝑎𝑓𝑎𝑠 ∫ exp (
−𝜏2

2𝜎𝑓
2

) exp(−𝜆(𝑡 − 𝜏))
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 ∫ exp (
−𝜏2

2𝜎𝑓
2

+ 𝜆𝜏 − 𝜆𝑡)
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 ∫ exp (− (
𝜏2

2𝜎𝑓
2

− 𝜆𝜏) − 𝜆𝑡)
∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 ∫ exp (− (
𝜏

𝜎𝑓√2
−

𝜎𝑓𝜆

√2
)

2

+
𝜎𝑓

2𝜆2

2
− 𝜆𝑡)

∞

−∞

𝑑𝜏 

= 𝑎𝑓𝑎𝑠 exp (
𝜎𝑓

2𝜆2

2
− 𝜆𝑡) ∫ exp (− (

𝜏

𝜎𝑓√2
−

𝜎𝑓𝜆

√2
)

2

)
∞

−∞

𝑑𝜏 (53) 

 

The permutation integral is possible(54). Use the gaussian integral again. 

𝑥 =
𝜏

𝜎𝑓√2
−

𝜎𝑓𝜆

√2
 (54) 

𝜏 = 𝜎𝑓√2 (𝑥 +
𝜎𝑓𝜆

√2
) = 𝜎𝑓√2𝑥 + 𝜎𝑓

2𝜆 

𝑑𝜏

𝑑𝑥
= 𝜎𝑓√2 

 

The observed signal 𝑚(𝑡) becomes (55). 

𝑚(𝑡) = 𝑎𝑓𝑎𝑠 exp (
𝜎𝑓

2𝜆2

2
− 𝜆𝑡) ∫ exp(−𝑥2)

𝑑𝜏

𝑑𝑥

∞

−∞

𝑑𝑥  

= 𝑎𝑓𝑎𝑠 exp (
𝜎𝑓

2𝜆2

2
− 𝜆𝑡) 𝜎𝑓√2√𝜋 

= 𝑎𝑓𝑎𝑠𝜎𝑓√2𝜋 exp (
𝜎𝑓

2𝜆2

2
− 𝜆𝑡) 



= 𝑎𝑓𝑎𝑠𝜎𝑓√2𝜋 exp (
𝜎𝑝

2𝜆2

2
) exp(−𝜆𝑡)  (55) 

 

The result becomes the decay curve which is the exponent function 𝑠(𝑡) itself. This can be 

established by the semi-infinite integral interval like the gaussian function’s 

combination(56). 

𝑚(𝑡) = 𝑎𝑓𝑎𝑠 exp (
𝜎𝑓

2𝜆2

2
− 𝜆𝑡) ∫ exp(−𝑥2)

𝑑𝜏

𝑑𝑥

∞

0

𝑑𝑥 

= 𝑎𝑓𝑎𝑠𝜎𝑓√
𝜋

2
exp (

𝜎𝑝
2𝜆2

2
) exp(−𝜆𝑡)  (56) 

 

Although, the exponent function does not have a half width, this result gives an insight for 

the convolution. The difference between the exponent function and the gaussian function  

is the speed for their decay. 

 ＊The index shoulder of the exponent function is 1 order. 

 ＊The index shoulder of the gaussian function is 2 order. 

 

To be natural, the exponent function is a curve which decays slower than the gaussian 

function(𝐭 > 𝟏). Therefore, the convoluted waveform can be described that the curve which 

is slower than the other can be dominant. 

 

Real Response Model 

Up to now, the contents may be bored things by the formula derivations. But, if the observed 

signal was approximated(curve fitting) by the function above, it made sense. For the real 

system, be careful as below. 

 ＊Integral interval is limited 

 ＊There is a case that the convolution interval is a positive interval as above 0 

(time series) 

 ＊Sampling by the discrete system 

 ＊Repetition system(response accumulation) 

 

There is sometimes a case using the iteration method that the difference between the 

convoluted waveform and observed waveform will be minimized. But it is impractical from 

the point of the calculation cost. In the other hand, for the repetition system, 

the deconvolution is suitable. By the deconvolution of the frequency analysis(FFT), the 



system response function’s waveform can be specified directly. The response function will be 

a transfer function as the spectrum. The high frequency is often observed by the spectrum 

analyzer, it is an observation of S parameters(spectrum). As the author’s experience, the 

waveform’s reconstruction is possible like this case. The rising and falling timing of the 

waveform can be observed by this way, then it becomes a great help(the author has an related 

patent achievement).  

 

Conclusion 

The author has been having chances to think about the system ability for a long time. From 

this environment, there was a suspicion scene where the system degradation is. In that scene, 

this paper might be of some help, the author hopes. 


